2 jours (14 heures)

Formation certifiante - Code CNCP : 2234 - Certif Info : 93835

Objectifs

  • Connaître les notions de base de la data science
  • Comprendre le rôle de Python dans la science des données,
  • Maîtriser les opérations de base
  • Savoir faire la la collecte, la manipulation et la visualisation de différents types de données
  • Connaître les notions du Machine Learning et du deep learning
  • Connaître outils et des bibliothèques dédiés comme NumPy, Pandas, Matplotlib et TensorFlow

Prérequis

  • Connaissances en algorithmique
  • Connaissances en un langage de programmation structuré (C, VB, Java…)

Vous n’avez pas les prérequis nécessaires pour la formation Python pour la Data Science ? Contactez nous pour étudier ensemble un parcours sur mesure et garantir ainsi la réussite de votre projet.

Intervenants

Les contenus pédagogiques sont synchronisés sur les évolutions techniques grâce à notre équipe d’intervenant experts et professionnels du secteur enseigné. Les formateurs qui interviennent pour animer les formations ont une double compétence : compétence informatique et compétence métier (Banque, Assurance, Administration, Santé, Transport).

PROGRAMME DE FORMATION PYTHON POUR LA DATA SCIENCE

Jour 1
  • Python pour la data science
  • Comprendre l’importance de la data science
  • Expliquer le choix de Python
  • Installation de Python

Opérations basiques avec Python

  • Opérations basiques sur les listes
  • Opérations avancées sur les listes
  • Les dictionnaires
  • Les compréhensions

Chargement et préparation des données

  • Intérêt du prétraitement de données
  • Chargement des fichiers Excel et CSV
  • Chargement d’un fichier JSON
  • Interrogation d’une base de données SQL Server
  • Concaténation de différentes sources de données
  • Fusion de différentes sources de données
  • Manipulation des données manquantes
  • Maîtrise des statistiques descriptives avec NumPy
  • Maîtrise des statistiques descriptives avec Pandas
  • Manipulation des données
  • Différents types de données
  • Manipulation des données quantitatives avec NumPy
  • Techniques d’encodage
  • Manipulation des données textuelles avec Pandas
  • Manipulation des données textuelles avec NLTK
  • Utilisation des séries temporelles
  • Manipulation des images

Atelier pratique

Jour 2
  • Découvrir les bases de la visualisation de données
  • Matplotlib
  • Seaborn
  • Bokeh
  • Aller plus loin avec Matplotlib

Initiation au Web scrapig

  • Web scraping
  • Exploration d’un document HTML avec Beautiful Soup
  • Objets Tag et NavigableString
  • Aller plus loin avec le web scraping
  • Pratique du web scraping

Initiation aux algorithmes de machine learning

  • Régression linéaire
  • Mise en œuvre la régression linéaire
  • Algorithme SVM
  • Utilisation de l’algorithme SVM
  • Classification naïve bayésienne
  • Pratique de la classification naïve bayésienne
  • Algorithme des k-moyennes
  • Utilisation de l’algorithme des k-moyennes
  • Analyse en composante principale PCA

Deep learning avec Keras et TensorFlow

  • Définition du Deep learning
  • Concepts du deep learning
  • TensorFlow
  • Keras
  • Compréhension et préparation des données
  • Déploiement du modèle

Atelier Pratique

Une attestation d’assiduité sera délivrée après la validation de toutes les compétences de ce module.

POUR TOUTE DEMANDE DE RENSEIGNEMENT OU DE DEVIS